Effects of anisotropic viscosity and texture development on convection in ice mantles
نویسندگان
چکیده
[1] Convection may occur in the ice shells of satellites in the outer solar system. The style of convection, rate of heat transport, and resulting surface features depend on the rheology of ice, which in turn depends on temperature, grain size, stress, and crystallographic preferred orientation (CPO). Here we study the effect of CPO development and anisotropic viscosity on convection by coupling a model of polycrystalline ice deformation with a macroscopic flow model. Despite having a first-order effect on velocities and heat transport in a convecting ice shell, fabric development is unlikely to be observable either directly by spacecraft-based radar or indirectly based on changes in the wavelength or amplitude of dynamic topography.
منابع مشابه
Convection in ice I shells and mantles with self-consistent grain size
[1] The viscosity of ice I is grain size dependent for temperature and stress conditions appropriate for ice I shells and mantles of large and midsized icy satellites. Satellite thermal evolution, heat flux, critical shell thickness for convection, brittle/ductile transition temperature, and potential for surface deformation are therefore grain size dependent. Using measured grain sizes from te...
متن کاملConvection Heat Transfer Modeling of Nano- fluid Tio2 Using Different Viscosity Theories
In this paper, the effects of adding nanoparticles including Tio2 to a fluid media for purpose of free convection heat transfer improvement were analyzed. The free convection was assumed to be in laminar flow regime and the solutions and calculations were all done by the integral method. Water, as a Newtonian fluid, was considered the base fluid (water) and all the thermo physical properties of...
متن کاملInvestigation of Natural Convection in a Vertical Cavity Filled with a Anisotropic Porous Media
In present paper, a numerical analysis for a rectangular cavity filled with a anisotropic porous media has been studied. It is assumed that the horizontal walls are adiabatic and impermeable, while the side walls of the cavity are maintained at constant temperatures and concentrations. The buoyancy force that induced the fluid motion are assumed to be cooperative. In the two extreme cases o...
متن کاملChemical Reaction Effects on Bio-Convection Nanofluid flow between two Parallel Plates in Rotating System with Variable Viscosity: A Numerical Study
In the present work, a mathematical model is developed and analyzed to study the influence of nanoparticle concentration through Brownian motion and thermophoresis diffusion. The governing system of PDEs is transformed into a coupled non-linear ODEs by using suitable variables. The converted equations are then solved by using robust shooting method with the help of MATLAB (bvp4c). The impacts o...
متن کاملSingle Walled Carbon Nanotube Effects on Mixed Convection heat Transfer in an Enclosure: a LBM Approach
The effects of Single Walled Carbon Nanotube (SWCNT) on mixed convection in a cavity are investigated numerically. The problem is studied for different Richardson numbers (0.1-10), volume fractions of nanotubes (0-1%), and aspect ratio of the cavity (0.5-2.5) when the Grashof number is equal to 103. The volume fraction of added nanotubes to Water as base fluid are lowers than 1% to make dilute ...
متن کامل